Probability & Statistics

10.1/10.2 Explore and apply rules of conditional probability

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Describe sample space (S.CP.1)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Describe events within the sample space using characteristics <u>or as unions,</u> <u>intersections, or</u> <u>complements of other</u> <u>events (with and without</u> <u>notation)</u> Recognize, determine <u>and</u> <u>use</u> independent and	Describe events within the sample space using characteristics	Identify events in a sample space Recognize and determine independent probability in	Little evidence of reasoning or application to solve the problem
conditional probability (S.CP.2, S.CP.3, S.CP.5, S.CP.6, S.MD.6, S.MD.7)	 Designing Connecting Synthesizing Applying Justifying Critiquing 	conditional probability in contextual problems Apply probability concepts to <u>analyze and make fair</u> <u>decisions</u> related to real- world situations	<u>conditional probability</u> in contextual problems	contextual problems.	Does not meet the criteria in a level 1
Construct frequency tables (S.CP.4)	 Analyzing Creating Proving 	Construct a two-way frequency table for data, use the table to determine independence, <u>and</u> calculate conditional probabilities from the table	Construct a two-way frequency table for data <u>and use the table</u> to determine independence <u>or</u> calculate conditional probabilities from the table	<u>Construct a two-way</u> <u>frequency table</u> for data	
Apply rules of probability (S.CP.7, S.CP.8)		Apply the addition and multiplication rules in a probability model <u>and</u> <u>interpret the answer in</u> <u>context of the situation</u>	Apply the addition <u>and</u> multiplication rules in a probability model	Apply the addition <u>or</u> multiplication rules in a probability model	

- S.CP.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
- S.CP.2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
- S.CP.3. Understand the conditional probability of *A* given *B* as *P*(*A* and *B*)/*P*(*B*), and interpret independence of *A* and *B* as saying that the conditional probability of *A* given *B* is the same as the probability of *A*, and the conditional probability of *B* given *A* is the same as the probability of *B*.
- S.CP.4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the twoway table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.
- S.CP.5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.
- S.CP.6. Find the conditional probability of *A* given *B* as the fraction of *B*'s outcomes that also belong to *A*, and interpret the answer in terms of the model.
- S.CP.7. Apply the Addition Rule, P(A or B) = P(A) + P(B) P(A and B), and interpret the answer in terms of the model.
- S.CP.8. (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model.
- S.MD.6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
- S.MD.7. (+) Analyze decisions and strategies using probability concepts (e.g.product testing, medical testing, pulling a hockey goalie at the end of a game).

Probability & Statistics

11.1/11.2 Analyze statistical data and explore normal distributions

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Understand statistical data and models (S.IC.1, S.IC.2, S.IC.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Use sample data to make inferences about a population Explain using randomization why a sample survey, experiment or observational study is most appropriate Decide if data models are consistent with the results	Use sample data to make inferences about a population Determine whether a sample survey, experiment or observational study is most appropriate Determine whether experimental probabilities match given theoretical probabilities	Identify when sample data can be used to make inferences about a population Identify whether a given scenario represents a sample survey, experiment or observational study Identify experimental and theoretical probabilities	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a
Use data (S.IC.4, S.IC.5, S.IC.6, S.ID.4)		 Can do <u>all</u> of the following: Use data from a sample survey to estimate a population mean or proportion Develop a margin of error through the use of simulation models for random sampling. Use data from a randomized experiment to compare two treatments Use simulations to decide if differences between parameters are significant. Evaluate reports based on data. Uses the means and standard deviations of data sets to fit them to normal distributions Fits functions to data in order to solve contextual problems 	 Can do <u>five</u> of the following: Use data from a sample survey to estimate a population mean or proportion Develop a margin of error through the use of simulation models for random sampling. Use data from a randomized experiment to compare two treatments Use simulations to decide if differences between parameters are significant. Evaluate reports based on data. Uses the means and standard deviations of data sets to fit them to normal distributions Fits functions to data in order to solve 	 Can do <u>four</u> of the following: Use data from a sample survey to estimate a population mean or proportion Develop a margin of error through the use of simulation models for random sampling. Use data from a randomized experiment to compare two treatments Use simulations to decide if differences between parameters are significant. Evaluate reports based on data. Uses the means and standard deviations of data sets to fit them to normal distributions Fits functions to data in order to solve 	criteria in a level 1

S.IC.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.

S.IC.2 Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.
 S.IC.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how rais

S.IC.3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

S.IC.4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.

S.IC.5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.

S.IC.6 Evaluate reports based on data.

S.ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.